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Abstract 

The problem is considered o f  finding exact solutions o f  the  Einstein-Maxwell  equat ions  
which describe the  physical s i tuation o f  two colliding and subsequent ly  interacting 
electromagnetic waves. The general theory of relativity predicts a nonlinear interaction 
between electromagnetic waves. The situation is described using an approximate geo- 
metrical method, and a new exact solution describing two interacting electromagnetic 
waves is given. This describes waves emitted from two sources mutually focusing each 
other on the opposite source. 

1. Introduction 

Electromagnetic waves are described mathematically as solutions of  
Maxwell's equations. These equations are linear, and solutions can be simply 
superposed. This means that in Maxwell's model, electromagnetic waves do 
not interact. However, it is unlikely that any physical theory is exactly linear, 
and therefore a (usually negligible) interaction may be expected between 
electromagnetic waves. Such an interaction in fact appears when electromag- 
netic fields are described in the general theory o f  relativity. Maxwell's equations 
remain linear in form, but the gravitational field equations are highly nonlinear. 
The physical situation may therefore be considered in the following way. Any 
electromagnetic wave or field is associated with a gravitational wave or field 
which is coupled to it through the Einstein-Maxwell equations. When any two 
electromagnetic waves or fields meet, their associated gravitational fields inter- 
act nonlinearly causing an interaction between the two fields. 

The effects of  this mutual interaction of  electromagnetic waves will be 
minute, and it is unlikely that it will ever be directly detected experimentally. 
However, it may have significance cosmologically. It is possible that photons 
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from very distant galaxies will have suffered sufficient interactions to distort 
their observation. It is also possible that this effect will have significance on 
the subatomic scale. 

tn this work I attempt to consider the consequences of the nonlinearity of 
Einstein's equations as far as electromagnetic waves are concerned. I attempt 
to describe the nonlinear interaction between electromagnetic waves that is 
predicted by the general theory of relativity. The interaction between electro- 
magnetic waves is caused basically by the interaction between their associated 
gravitational waves, and therefore it is necessary also to consider the related 
problem of the collision and interaction of gravitational waves. 

Obviously both exact and approximate methods need to be considered. The 
approximate geometrical method described by Penrose (1966) is relevant here, 
In the following work it is assumed that no fields are present other than those 
of the electromagnetic or gravitational waves considered. 

2. The Spin Coeff icient  Formalism 

It is particularly appropriate to develop the techniques of geometrical optics 
to describe a congruence of null rays in curved space-time. For details of this 
approach see Jordan et  al. (1961). However, the notation and methods of 
Newman and Penrose (t 962, 1963) are used here. Into the space-time manifold a 
tetrad of null vectors l , ,  nu,  mu,  M s is introduced, l~ and n s being real and 
future pointing, and m u and its complex conjugate ?hu being formed from a 
pair of unit spacelike vectors a s and b u orthogonal to lu and n u by mu = 2 -1/2 
(a s - ibu). Then with a suitable scaling lunS = 1, r n , ~  ~z = - 1 and the other 
products are all zero. The spin coefficients are the complex tetrad components 
of the covariant derivatives of the tetrad vectors. They may be defined by 

K = lu;vmUl v, 

p =ls;vmSrtl p, 

o = lu;vmUm v, 

~. = lu;vmUn p, 

p = - - n l s ; v ~ # n  v 

t~ = - n u ; v m S m  v 

7r = - n s ; v T ~ # [ P  

e = ½q~;vnUl v ] m u ; , ~ U l  v) 

= ~ ( l u ; , n U ~ ,  _ rn u ; , ~ u ~ v )  

= ½(lu;vnUrn v - m u ; v ~ S m  v) 

3' = ½(lu;,n sn~ - m u ; , m  unÈ) 

The spin coefficients are related through the tetrad to the geometrical proper- 
ties of the manifold. For example, if K = 0 then l u is tangent to a geodesic null 
congruence. I f  in addition the parameter along the congruence is affine then 
Re e = 0 and Re p, Im p, and o define the contraction, twist, and shear of the 
congruence, respectively. In the congruence defined by n u the coefficients 
- v ,  - p ,  - X  correspond to K, p, o, respectively. 
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The ten independent components of  the Weyl tensor C~xuv may be defined 
conveniently in terms of  five independent complex tetrad components by 

'~o = --CKxuv lKmxl~mv 

~1 = -C~xuv UnT"lumv 

g t  2 ± ~  m . _ X c t l ~ r t #  = - 2 t ~ g ~ # v  t [t k t  - -  mUM #) 

,I, 3 =--CKxuvnKlXnU~ v 

g~ 4 = --CK x u vn ~ ~ xnu ~ v  

These components have the following physical meaning (Szekeres, 1965): ~I' o 
and qq (or ~I' 4 and ~ 3 )  describes transverse and longitudinal gravitational 
wave components in the n u (or lu) direction, respectively. ~I' z denotes a 
coulomb component. 

The tetrad components of  the electromagnetic field tensor Fur are denoted by 

~o = FuvlUmV, ~1 = ½F~v( lunv + fnUmV), cb2 = Fuvm unv 

where q>o and (I) 2 describe null wave components in the n ,  and l u directions, 
respectively. The components o f  the Ricci tensor are now given in terms of  
these components,  and the gravitational field equations become a set of  
equations involving the first derivatives o f  the spin coefficients (Newman and 
Penrose, 1962; Trim, 1972). The first two equations upon which attention 
is concentrated in following sections are 

Dp - 6K = p2 + oa + p(e + g)  - T c T -  K(3~ + 3 -  rr) + q~0~o 

Do - 6K = o(p + ~) + o(3e - ~) - ~:(r - ~ + ~ + 3/3) + '.I, 0 

where Dq~ = ~);ul u, ~¢ = ¢;um u, etc. 

3. Approximate Geometrical Method 

Consider a geodesic congruence of  null rays and align the vector l u with it. 
Then K = 0 and it is possible to scale the tetrad so that in addition e = 0. The 
first two equations then read 

Dp = p2 + aS + ¢Po~o (3.1) 

Do = o(p + 5) + ,1% (3.2) 

If  there is no gravitational or electromagnetic radiation with a component in 
direction different from lu(q~ o = O, '~o = 0), then it is possible for the rays to 
be parallel (zero contraction, twist, and shear, p = O, o = 0). If such rays then 
meet an electromagnetic wave with ~o 4= 0 and if'0 = O, then the rays will 
start to contract and a singularity like a focus will occur a finite distance along 
the rays. Mternatively, if the rays meet a transverse gravitational wave (q'o 4= 0, 
a9 o = 0), then the rays will start to shear and the term o~ in (1) wilt also cause 
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them to contract. Thus the gravitational wave causes the rays to focus astig- 
matically. These properties have been considered in detail by Penrose (1966). 

It has been suggested by Szekeres (1972) that such mutual focusing of 
gravitational and electromagnetic waves could produce the unexpectedly 
high energy of the gravitational waves observed by Weber (1969). However, 
these observations have still not been confirmed (Papini, 1974). 

4. Colliding Gravitational and Electromagnetic Waves 

The effects of the collision and interaction of two gravitational or electro- 
magnetic waves are now considered. The null vector I~ can be aligned with one 
wave and nu with the other. This is equivalent to making a Lorentz transforma- 
tion to a frame of reference in which the two waves approach each other from 
exactly opposite spatial directions. It is therefore necessary only to consider 
"head-on" collisions. Now consider two colliding plane electromagnetic waves. 
A collision of two such sandwich waves is pictured in Figure 1. 

The situation described can be seen to be essentially a boundary value 
problem with initial data given along the two null hypersurfaces indicated by 
thick lines in Figure 1. Such a situation in the vacuum case has been con- 
sidered by Sachs (1962), Robson (1973) has shown that the appropriate junc- 
tion conditions are those proposed by O'Brien and Synge (1952). Bell and 
Szekeres (1974) have recently confirmed this by showing that a discontinuity 
in the normal derivative must occur in colliding electromagnetic waves, so that 
the familiar Lichnerowicz conditions must necessarily be relaxed. 

Exact solutions describing colliding gravitational waves have been obtained 

\ / 
\ , / / 

\ / 

time 

Figure 1-The regions F are flat, and A and B represent two 
sandwich waves propagating in opposite directions, C is the 
interaction region. Null coordinates u and v along the waves 
are chosen for convenience. 
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time 

Figure 2-Colliding plane gravitational waves. The double lines repre- 
sent the coordinate singularities in regions A and B which are con- 
rained in the Rosen metric. The jagged line represents the singularity 
which occurs in the interaction region. 
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by Khan and Penrose (1971) and Szekeres (1970, 1972). The structure of  these 
solutions is shown in Figure 2. These solutions are given in terms of the Rosen 
(1937) metric 

ds 2 = 2e - M  du dv - e - U ( e  v dx  2 + e -  Vdy2 )  

where M, U, and V are functions of both u and v in the interaction region. The 
singularities in the metric may be interpreted as being caused by the focusing 
of geodesic congruences across the waves. The singularity found in the inter- 
action region is an essential singularity and along it Go, 'IJ2, and tI' 4 are all 
infinite. The remaining are removable coordinate singularities. 

An exact solution describing colliding electromagneticwaves has been 
obtained by Bell and Szekeres (1974), again in terms of the Rosen metric. How- 
ever, in this solution the fields inside all regions are conformally flat. The singu- 
larity in the interaction region is a nonessential coordinate singularity and it 
can be seen that in the entire region ~A are zero and • 0 and cb 2 constants. 
The singularities in this solution may be regarded as being caused by the 
focusing of geodesics across the waves, but the field at the focal pointsremains 
bounded. This is therefore a very restricted type of solution and it may be ex- 
pected that a collision of more general (i.e., not conformaUy flat) electro- 
magnetic waves will result in essential singularities. 

5. The Interact ion Reg ion  

Although the physical situation being considered corresponds essentially to 
a boundary value problem with initial data given on two null hypersurfaces, it 
is very difficult to obtain exact solutions and the following alternative approach 
is instructive. This concentrates attention on the interaction region. The 



534 J.B. GRIFFITHS 

approach basically is to guess the nature of  the field in the interaction region 
and to look for an exact solution. Only when an exact solution is obtained is it 
necessary to look for suitable boundary conditions giving rise to it. Thus asymp- 
totic properties need not be considered when looking for the exact solution. 
This approach has already been applied successfully (Griffiths, 1975a,) to a 
study o f  interacting gravitational waves, although suitable boundary conditions 
for the exact solution obtained have not yet' been found. 

Now consider a region containing two null electromagnetic waves propa- 
gating in different directions. I f  the tetrad is aligned with the two waves then 
q~l = 0..The source-free Maxwell equations (Newman and Penrose, 1962) 
then become 

D ~  2 = Co - 2e)q~ 2 - X~ o 

6(b 2 = ( r -  2/3)q5 2 - v~ o 

A~0 = - - ~  -- 27)q% + o~2 

6q5 o = -(zr - 2a)~ o + ~:$z 

It can be seen from these equations that when two electromagnetic waves 
interact, they no longer necessarily follow shear-free null geodesic congruences 
as they do in the noninteraction regions (Mariot, 1954; Robinson, 1961). If  the 
rays are shearing, and particularly if they are nongeodesic, it is very difficult 
to solve the field equations, since the spin coefficient method of  Newman and 
Penrose provides no simplifications. However, it is reasonable to assume that 
there is no electromagnetic interaction between the two waves. Thus it would 
be expected that both waves would independently be solutions of  Maxwell's 
equations. If  this were the case, both congruences wmdd continue to be geo- 
desic and shear-free in the interaction region. There is as yet only one known 
exact solution corresponding to this case (Griffiths, 1976), but suitable 
boundary conditions for it have not yet been obtained. 

Szekeres has pointed out to me that the above criterion for the independence 
of the two waves may in fact be a trifle strong. In his exact solution (Bell and 
Szekeres, 1974), the interacting rays are geodesic but have nonzero shear. 
Since this is an exact global solution it must be concluded that there may be an 
electromagnetic interaction between two waves given through Maxwell's equations. 
In the new exact solution given in Section 6, the interacting rays are similarly 
geodesic and shearing. 

Even in the case where the two waves follow shear-free geodesic null con- 
gruences, it is still difficult to solve the field equations on account of  the term 
q%Ub o that remains in equation (3.1). This in effect prevents the integration to 
obtain p. However O/,o~ 2 - ~a 2 is an invariant in Einstein-Maxwell theory 
(Debney and Zund, 1971), and it is possible to make a transformation to a new 
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tetrad for which ~o and ~52 are simultaneously zero. Such a transformation is 

(-~- t 1/4 
1 02 ( - i l ;  + rntu + m'u + in'u) 

1 {~22~ 1/4 
= 7 q; + ;m; +n.) 

Then q~'l = -i(q~oO2)l/2, and the condition for two independent electromag- 
netic waves 

= o = v = X = O  (5.1) 

becomes 

K' = n' + 2a ' ,  o' = #' + 23", v' = r' + 23',  X' = p' + 2e' 

It will, however, still be difficult to find a solution of the field equations 
unless one of the principal null vectors is geodesic and shear-free. But, if 
this extra condition is added, it is possible to show after a tedious calculation 
that no exact solutions exist in this case. The above transformation will prove 
useful, however, in the case in which the conditions (5.1) are relaxed. In fact 
all exact solutions of the Einstein-Maxwell equations for which ~0 = 0, 
q~l v~ 0, q)2 = 0 can be transformed back into solutions of the type required. 
An example of  such a solution is that given by Tariq and Tupper (1974). 
Other examples may be obtained from the results of Trim (1972). 

If  the assumption (5.1) is made, both congruences are geodesic and shear- 
free. It is now necessary to consider the contraction (or expansion) and twist 
of the congruences. In this approximate approach Penrose (1966) has assumed 
that the congruences are twist-free, that is, hypersurface orthogonal. Such a 
restriction is not necessary and will now be relaxed. In fact it has been 
proved (Griffiths, 1975b) that if  the two congruences can be affinety para- 
metrized simultaneously then the twist is necessarily nonzero. Now consider 
equation (3.1) in which p is complex and o and e zero: 

Dp = pZ + ~o~0 (5.2) 

If  the term ~o~o  is taken as constant, then the solutions of this equation will 
have the phase portrait given in Figure 3. If  the magnitude of one wave is 
approximately constant, then Figure 3 describes the relation between the con- 
traction and the twist of the rays of the opposing wave. The phase portrait 
contains two critical points. These correspond to solutions with zero contrac- 
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Figure 3-Phase portrait for solutions of equation (5.2) with ~o~0  a con- 
stant. This describes the re2ation between the contraction and the twist of 
the congruences in the interaction region. 

tion and constant nonzero twist. An exact solution corresponding to these 
points has been given previously (Griffiths, 1976). It describes two electro- 
magnetic waves of constant magnitude passing through each other, the twist 
of one wave being proportional to the energy density of the other. The 
equivalent solution for twisting noncontracting gravitational waves has also 
been given (Griffiths, 1975a). It can be seen from the phase portrait that 
these solutions appear to be stable with respect to perturbations in the twist 
and contraction, and therefore are of particular physical interest. 

The other solution to which particular interest is attached is that with 
zero twist. This solution in the phase portrait indicates that the congruence 
will start with infinite expansion (a big bang), which then decreases to zero, 
and then continues with ever increasing contraction to a final singularity. 
This describes a case of continuous focusing. An exact solution corresponding 
to this case will be given in the following section of this paper. Obviously all 
such solutions are unstable with respect to small perturbations in the twist. 
Any perturbation would cause an increasing twist that would halt the con. 
traction of  the waves and cause them again to expand. 
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6. New Solution for the Twist-Free Case 

In this section the twist-free case, when p is real, is considered. The inter- 
action region is one of continuous focusing. I f  the waves are initially expanding 
as from some source, then the expansion is slowed down, stopped, and if the 
interaction continues, the rays are then subject to an ever increasing contraction. 
A general solution describing this situation would be extremely difficult to 
obtain. However, there is one comparatively simple case for which a solution 
has been obtained. This is now given. 

One particular case of  continuously focusing waves is that in which the two 
waves follow the same paths, but in opposite directions. This situation may be 
thought of as follows: Consider two sources of electromagnetic radiation a 
fixed distance apart. The radiation from each source causes the radiation from 
the other to focus. I f  the sources are a certain critical distance apart, it is poss- 
ible that rays emitted from one source actually focus at the other. The 
solution given below corresponds to such a situation. Obviously this is a 
very restricted solution, and is only possible for a certain polarization of the 
two waves. Nevertheless it is an instructive exampie of the differences 
between the general relativistic and classical field theories. 

Since the two waves follow the same paths in opposite directions, the 
expansion of the rays from one source at any point equals the contraction of 
the rays from the other. Similarly the shear and rotation of one null congruence 
equal minus those of the other. It is therefore possible to scale the tetrad so 
that 

#=p,  X=5, rr=~" 

In the following solution the shear of  the congruences is necessarily nonzero, 
and therefore the waves do not satisfy the criterion for independence discussed 
above. It has already been assumed that the rays are tangent to twist-free null 
geodesics so that 

p =/5, ~ =0,  ~ = 0 ,  qq =0  

The magnitudes of the two waves are now the same at any point and it is possible 
to assume that 

This is also an assumption about the polarization of the two waves, and it 
immediately implies that 

r = 8 + ~  

It is now possible to use the remaining tetrad freedom to put 

2~=? ,  e=g, 7 = {  
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T h e n  w i t h  t he  f u r t h e r  a s sumpt ions  t h a t  e = 3' and  t ha t  r 4= 0 the  field equa t ions  
reduce  to 

D p  = 2 p  2 + r g  - 2loe 

D o  = 2lOo + r 2 - 2oe  + qbo2 

D r  = 3 p r  + o~ 

2De = t92 -- oo + 3 r ~  -- 4e  2 

D ~  o = Co - 2e)¢I, o - o ~  o 

D p  + Ap = 0, 6p  = 0 ( 6 . I )  

D o  + Ao = 0,  6 o = 0 = Re (6 .2)  

D r  + A r  = O, b r  = 0 = g r  (6 .3)  

D e  + Ae = 0, 8e  = 0 (6 .4)  

Dq5 o + A ~  o = 0, 8 ~  o = 0 = ~ o  

(6 .5)  

w h e r e  

and  the  c o n d i t i o n  

aJff O = ~Y 4 = r2 --  4 0 e  + 0902 

~t 1 = ~It 3 =lOT--  OT 

xtt 2 = ~ 2 = [.)2 _ O0 

q~O~ 0 = p2 _ oO + T~ -- 4pe 

mus t  b e  sat isf ied.  The  Bianch i  iden t i t i e s  have  a l ready b e e n  satisf ied.  
Now since g = 0 and  0 = P, lu and  n u can be  w r i t t e n  as scalar mul t ip les  o f  

gradients .  Put  

l~ = B -  l u , ~ ,  n u = A - l v , ~  

and  label  coo r d i na t e s  u = x ° ,  v = x 1 , x = x 2 , y = x 3 . T h e n  t he  c o m p l e t e  t e t r a d  

m a y  be  given b y  

I u = A 6 1  u + X 2 ~ 2  # +X363/~  

n ~' = B 6 0  u + y Z 6 2 u  + y 3 6 3 u  

rn u = ~262 .  + ~363"a 

It is in fact  poss ible  here  to  pu t  B = A ,  ~2 = 1, and  ~3 = i. T h e n  p u t t i n g  
s = v - u,  it can  be  seen t h a t  p ,  o, r ,  e, and  @0 are all func t ions  o f  s only .  The  

me t r i c  equa t i ons  n o w  require  t h a t  

A = A ( s )  

x 2 = P 2 ( s )  - (o  + o)x 

x 3 : e 3 ( s )  - (o  - o ) y  

y 2  : R 2 ( s )  + (p  + o ) x  

y 3  = R 3 ( s )  + (p  __ o ) y  
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where 

DA = - 2 e A  (6.6) 

D(P 2 + R  2) = -Co + a + 2e)(P 2 + R  2) + 2(r  + f) (6.7) 

D(p3 + R a ) = - ( p + o +  2e)(p3 + R 3 ) - 2 i ( r - ~  ") (6.8) 

The metric can now be obtained from 

guy = l~nv + nulv - mu~v  - ~ r n v  

where 
l~z =A-16u °, n~ =A-16v  1 

y2 + iy3 X 2 + iX  3 _ 1 ~u 2 _ i 
m~ - 2A ~u° + 2A 6ul 2 6 9  

It now remains to solve the set of  ordinary differential equations (6.1)- 
(6.8) where D = A(s) d/ds. Although no analytic expression has been obtained, 
the approximate numerical integration of  the equations is straightforward, 
Taking the origin s = 0 at the midpoint between the two sources, the initial 
conditions may be taken as 

p(O) =0 ,  o(0) = O, Ir(O)l = IqSo(O)i, e(O) = 0 

A(0) = 1, e2(0) +R2(0)  = 0, P3(0) + R3(0) = 0 

and units may be chosen such that tqSo(0) t = 1. It is now a simple matter to 
integrate the equations for increasing values of  s. The sources of the radiation 
will be situated at points s = -+s 1 which are points where p becomes infinite 
and A zero. In the particular case when o, z, and q5 o are all real and positive, 
it should be noticed that 2e = p + cr so that 

S 

A(s) = I - ~ (p + o) ds 
o 

and therefore 
51 

| (p + o) ds = i 
o 

Numerical integration gives s 1 to be approximately equal to 0.56. Thus in a 
general system of units 

sl = 0.56(SrcG)-l/2 c 2 [q5o(0)] -1 

The above is a very interesting solution of  Einstein's equations. No such 
solution is possible in classical Maxwell theory. It is, however, extremely 
unlikely that it describes any real macroscopic situation. But it has been 
pointed out to me by Madore that it may be possible that this solution could 
be used to construct a geon by identifying the two sources. This has not yet 
been considered. 
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